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Résumé. - Il semble généralement admis qu’il existe, en théorie quantique du rayonnement, une indétermination
dans la séparation des effets respectifs des fluctuations du vide et de la réaction de rayonnement. Nous montrons
ici que cette indétermination est levée si l’on impose aux vitesses de variation correspondantes d’être hermitiques
(condition nécessaire pour qu’elles soient interprétables physiquement). Cette procédure est généralisée au cas
d’un petit système S interagissant avec un grand réservoir R, et permet de séparer deux types de processus physiques,
ceux où R fluctue et polarise S (effets des fluctuations du réservoir), ceux où c’est S qui polarise R (effets de la réac-
tion de R sur S). Nous appliquons cette procédure au cas d’un électron atomique interagissant avec le champ
de rayonnement et identifions ainsi les contributions des fluctuations du vide et de la réaction de rayonnement
aux corrections radiatives et à l’émission spontanée. L’analyse des résultats obtenus nous permet de préciser les
images physiques qui doivent être associées aux divers processus radiatifs.

Abstract - It is generally considered that there exists in quantum radiation theory an indetermination in the
separation of the respective effects of vacuum fluctuations and radiation reaction. We show in this paper that such
an indetermination can be removed by imposing to the corresponding rates of variation to be Hermitian (this
is necessary if we want them to have a physical meaning). Such a procedure is generalized to the case of a small
system S interacting with a large reservoir R and allows the separation of two types of physical processes, those
where R fluctuates and polarizes S (effects of reservoir fluctuations), those where it is S which polarizes R (effects
of self reaction). We apply this procedure to an atomic electron interacting with the radiation field and we then
identify the contribution of vacuum fluctuations and self reaction to radiative corrections and spontaneous emis-
sion of radiation. The analysis of the results obtained in this way allows us to specify the physical pictures which
must be associated with the various radiative processes.
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1. Introduction. - Understanding the physical
mechanisms responsible for spontaneous emission
of radiation by an excited atom, or for radiative
corrections such as radiative line shifts, electron’s
self energy or magnetic moment... is a very stimulating
problem which has received a lot of attention [1, 2].
The quantitative results for these corrections are

of course well established. The physical interpreta-
tions remain however more controversial. Two extreme

points of view have been investigated. In the first

one, the interaction of the electron with the quantum
fluctuations of the vacuum field, the so-called « va-
cuum fluctuations », is considered as playing the
central role. One tries to interpret spontaneous emis-
sion as an emission « triggered » by vacuum fluctua-
tions. The most famous example of such an approach
is the interpretation of the Lamb shift as being due to

the averaging of the Coulomb potential of the nucleus
by the electron vibrating in vacuum fluctuations [3].
One must not forget however that such a picture
leads to the wrong sign for the electron’s spin anomaly
g - 2 : the vibration of the electron’s spin in vacuum
fluctuations does not increase the effective magnetic
moment but reduces it [3, 4]. In the second point of
view, the basic physical mechanism is identified as the
interaction of the electron with its own field, the so
called « radiation reaction » although it would be

proper to call it the electromagnetic self interaction
since it includes the interaction of the electron with
its Coulomb field as well as with its radiation field [5-
8]. We will use in the following the shorter denomina-
tion «self reaction » for this process. In such an appro-
ach, one tries to interpret Q.E.D. radiative corrections
along the same lines as the radiative damping and
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the radiative shift of an oscillating classical dipole
moment. We should note however that the vacuum
field cannot be completely forgotten in the interpre-
tation of finer details of spontaneous emission, such
as fluorescence spectrum or intensity correlations,
which are related to higher order correlation func-
tions [9, 10].

Actually, it is now generally accepted that vacuum
fluctuations and self reaction are « two sides of the
same quantum mechanical coin » [11], and that their
respective contributions to each physical process
cannot be unambiguously determined [I 1- 14]. Such
an opinion is based on the following analysis, carried
out in the Heisenberg picture which provides a very
convenient theoretical framework since it leads, for
the relevant dynamical variables, to equations of
motion very similar to the corresponding classical
ones: The calculations [11-14] can be summarized
by the general scheme of figure 1.

Heisenberg’s equations of motion for field and
atomic variables are derived from the Hamiltonian
of the combined atom + field system. The equation
for the field looks like the equation of motion of an
harmonic oscillator driven by an atomic source term
and is readily integrated. This leads to an expression
for the total field E which is a sum of two terms :

The « free field » Ef corresponds to the solution of the
homogeneous field equation (without atomic source
term), and coincides with the « vacuum field » when
no photons are initially present. The « source field »
Es is the field generated by the atomic source (solution
of the inhomogeneous field equation). Consider now
the atomic equation. The rate of variation, dG(t)/dt,
of a given atomic observable G(t) appears to be
proportional to the product of atomic and field
operators, N(t) and E(t), taken at the same time :

The final step of the calculation consists in inserting
in ( 1. 2) the solution ( 1.1 ) obtained for E(t), which

Fig. 1. - Principle of the derivation of the atomic dynami-
cal equation.

leads to a dynamical equation for the atomic system
(Fig. 1). The contributions of Ef and E., to dG /d t
can be interpreted as rates of variation :

respectively due to vacuum fluctuations and self
reaction. This interpretation directly follows from
the physical origin of Ef and E,,. The ambiguity men-
tioned above for this separation comes from the fact
that the two atomic and field operators N(t) and E(t)
appearing in (1.2) commute [they commute at the
initial time t = to, when they act in different spaces,
and the Hamiltonian evolution between to and t
preserves this commutation]. They can therefore be
taken in any order, N(t) E(t) as in (1.2), or E(t) N(t).
However, Ef(t) and ES(t) do not commute separately
with N(t), as their sum does. Consequently, N(t) Ef(t)
and Ef(t) N(t) generally differ. The two rates of varia-
tion (1. 3a) and (1.3&#x26;) therefore depend on the initial
order between the two commuting operators N(t)
and E(t), the total rate (1.2) being of course indepen-
dent of this order. In particular, if the normal order
has been chosen in (1.2) [with all field annihilation
operators at right, all field creation operators at

left], the contribution of vacuum fluctuations vanishes
when the average is taken over the vacuum state of
the field, and all radiative corrections appear to come
from self reaction. Different orders taken in (1.2)
would lead to different conclusions. Thus, it seems
that the relative contributions of vacuum fluctuations
and self reaction cannot be unambiguously identified.

MOTIVATIONS OF THIS PAPER. - In this paper, we
would like to present some arguments supporting
the choice of a particular order in (1.2) leading, in
our opinion, to a physically well defined separation
between the contributions of vacuum fluctuations
and self reaction. We don’t question of course the
mathematical equivalence of all possible initial orders
in (1. 2). Our argument rather concerns the physical
interpretation of the two rates of variation appearing
when ( 1.1 ) is inserted in ( 1. 2). If G is an atomic obser-
vable (Hermitian operator), the two rates of variation

contributing to d dt G(t), which is also Hermitian, must
be separately Hermitian, if we want them to have
a physical meaning. Furthermore, the field and ato-
mic operators appearing in the different rates of
variation must also be Hermitian if we want to be
able to analyse these rates in terms of well defined
physical quantities. We show in this paper that these
hermiticity requirements restrict the possible initial
orders in ( 1. 2) to only one, the completely symmetrical
order.
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A second motivation of this paper is to point out
that, with such a symmetrical order, a clear connec-
tion can be made with a statistical mechanics point
of view which appears to be in complete agreement
with the usual physical pictures associated with
vacuum fluctuations and self reaction. For example,
the radiative corrections can be expressed as pro-
ducts of correlation functions by linear susceptibilities.
For the vacuum fluctuations part of these correc-
tions, one gets the correlation function of the field
multiplied by the linear susceptibility of the atom,
which supports the picture of a fluctuating vacuum
field polarizing the atomic system and interacting
with this induced polarization, whereas for the self
reaction part, the reverse result is obtained : product
of the correlation function of the atomic system by
the linear « susceptibility » of the field which corres-
ponds to the picture of a fluctuating dipole moment
« polarizing » the field, i.e. producing a field, and
interacting with this field.

ORGANIZATION OF THE PAPER. - In section 2 we
introduce our notations and the basic concepts
(vacuum field, source field, radiation reaction...)
by applying the general theoretical scheme of figure 1
to the derivation of the quantum generalization of
the Abraham-Lorentz equation [17] describing the
dynamics of an atomic electron interacting with a
static potential and with the quantized radiation
field. We discuss the physical content of this equa-
tion and the difficulties associated with the quantum
nature of field variables. We explain also why it is

necessary to extend the calculations of section 2 (deal-
ing with the position r and the momentum p of the
electron) to more general atomic observables G.
The calculation of dG/dt, which is presented in

section 3, raises the problem of the order between
commuting observables, mentioned above in connec-
tion with equation (1.2) (such a difficulty does not
appear for r and p). We show how it is possible, by
the physical considerations mentioned above, to

single out the completely symmetrical order in ( 1. 2).
We then extend in section 4 the discussion to the
more general case of a « small system » 8 (playing the
role of the atomic system) interacting with a « large
reservoir » Jt (playing the role of the electromagnetic
field with its infinite number of degrees of freedom).
The advantage of such a generalization is to provide
a deeper insight in the problem. We point out in

particular that the expressions giving ( (-.-) )B d-t f
and dG averaged in the vacuum state of thedt /sr / 

g

field and calculated to the first order in the fine struc-
ture constant a. can be expressed in terms of simple
statistical functions of the two interacting systems
(correlation functions and linear susceptibilities).
We discuss the mathematical structure of these

expressions and their physical content.

Finally, the general results of sections 3 and 4 are
applied in section 5 to the physical discussion of the
relative contributions of vacuum fluctuations and
self reaction to the dynamics of an atomic electron.
Two types of effects are considered : the shift of atomic
energy levels, described by the Hamiltonian part of
dG and dG and the dissi ativedt f dt S , and the dissipative

effects associated with the exchange of energy bet-
ween the electron and the radiation field.

2. The quantum form of the Abraham-Lorentz
equation. - A few basic concepts are introduced in
this section, by considering a very simple system form-
ed by an electron bound near the origin by an external
potential and interacting with the electromagnetic
field.
We first introduce the Hamiltonian of the combin-

ed system « bound electron + electromagnetic field »
(§ 2.1). We then establish, in the Heisenberg repre-
sentation, the quantum dynamical equation for the
electron (§ 2.2). This equation appears to be very
similar to the corresponding classical one, known
as the Abraham-Lorentz equation. This close analogy
is however misleading and we will try to explain the
difficulties hidden in the quantum equation (§ 2.3).

2.1 BASIC HAMILTONIAN IN COULOMB GAUGE. -

2.1.1 Field variables. - The electric field is divided
into two parts : the longitudinal field E II and the
transverse field E.1. The longitudinal field at point R
is the instantaneous Coulomb field created by the elec-
tron at this point. It is expressed as a function of the
electron position operator r.

The transverse field E.1(R), the vector potential A(R)
and the magnetic field B(R) are expanded in a set
of transverse plane waves, normalized in a cube of
volume L3 :

with :
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ak, and akE are the annihilation and creation operators
for a photon with wave vector k and polarization E.
The summation concerns all the wave vectors k with
components multiple of 2 n/ L and, for a given k,
two transverse orthogonal polarizations e1, and .E2.

In classical theory, expansions similar to (2.2)
can be written, the operators ak, and akE being replaced
by c-numbers ockr,(t) and akE(t) which are actually
« normal » variables for the field.

In order to calculate the energy of the Coulomb
field of the particle, it is also convenient to take the
Fourier transform of the longitudinal field (2 .1 )
(for a given value of r) :

2 .1. 2 Electron variables. - The electron motion
is described by the position operator r and the conju-
gate momentum p :

The velocity operator, v, is given by :

where is the electron mass. Note that v is not an
electronic operator since it includes field variables
through A(r). The electron is bound near the origin
by an external static potential V o(R). If spin is taken
into account, the electron variables are supplemented
by the spin operator S. Magnetic and spin effects
will be briefly discussed in § 5. 2. 5. They are neglected
elsewhere.

2.1. 3 The Hamiltonian. - In the non relativistic
approximation, the Hamiltonian is the sum of five
terms : the rest mass energy of the electron, its kinetic
energy, its potential energy in Vo(R), the energy of
the longitudinal field and the energy of the transverse
fields 

*

The energy of the longitudinal field appears to be a
constant, representing the energy of the electrostatic
field associated with the charge. This constant can
be written as

c5ml can be considered as a correction to the mecha-
nical rest mass m of the electron. The same correction
appears in classical theory.

2 .1. 4 Introduction of a cut-off : - It is well known
that divergences appear in the computation of
various physical quantities (such as energy, momen-
tum...) associated with a charged point particle
interacting with the electromagnetic field. These
divergences are due to the contribution of the modes
with large wave vectors. In order to deal with finite
expressions, we will consider only the coupling of
the electron with modes k such that

This cut-off kM is chosen not too large so that the
non relativistic approximation is correct for all the
modes which are taken into account (h(OM  mc2
with com = ekM). On the other hand, (om must be
large compared to the characteristic resonance fre-
quencies mo of the bound electron. This gives two
bounds for kM : 

L ft

It is well known that theories using such a cut-off
are no longer relativistic invariant [15]. The modes
selected by condition (2. 10) are not the same in two
different reference frames, because of the Doppler
effect. It is possible to restore relativistic invariance,
by using some more sophisticated cut-off proce-
dures [16]. However, we are not concerned here
with the relativistic aspects of radiative problems
and we will ignore these difficulties. To summarize,
all the sums over k appearing here after must be
understood as limited by condition (2.10). The
same restriction also applies to the expansion (2.5)
of the longitudinal field. The energy of the longitu-
dinal field is then finite and equal to

which can be written as - h(om, where a is the fine
7r

structure constant.

2.1.5 Electric dipole approximation. - We also

suppose in this paper that the binding potential
localizes the electron in a volume centred on the
origin, with a linear dimension a much smaller than
the wave-length of the modes interacting with the
particle. (The cut-off kM introduced above is supposed
to satisfy km a  1.) Such an assumption which is

justified for an atomic electron, allows us to neglect
the spatial variation of the fields interacting with the
electron. We will then replace the fields at the electron
position E(r), A(r) by the fields at the origin E(0), A(0).
The electric dipole approximation is not essential

for the derivation of the results presented in this

paper. But the calculations are much simpler and the
physical conclusions remain unchanged (1).

(1) Corrections to the electric dipole approximation are
of higher order in lie. They have to be considered when
relativistic corrections are included in the Hamiltonian

(see for example [4]).
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To summarize the previous discussion, we will use hereafter the following Hamiltonian :

with

2.2 DYNAMICS OF THE ELECTRON INTERACTING WITH
THE ELECTROMAGNETIC FIELD. - 2.2.1 Principle of
the calculation. - The rate of variation of election
and field variables can be determined from the
Hamiltonian (2.13). The corresponding two sets of
equations are of course coupled; the field evolution
depends on the charge motion and, conversely, the
electron experiences a force due to the field.
The derivation of a dynamical equation for the

electron from these two sets of coupled equations is
well known [8, 13, 14] and follows the general scheme
of figure 1. One first integrates the field equations
in presence of the particle. The solution obtained
for the field is then inserted in the electron equation.
This leads to a quantum dynamical equation des-
cribing the motion of the electron interacting with
the free field as well as with its own field.

2.2.2 The electromagnetic field in presence of the particle. - Since all field operators are expressed in
terms of au and a£, we start with the Heisenberg equation for ak£(t) :

where

Equation (2.15) is then formally integrated and gives :

The evolution of akE(t) appears to be the superposition of a free evolution [first term of (2-17)] and a « forced »
evolution driven by the motion of the charge [second term of (2.17)]. We finally insert (2.17) in the expansions
(2.2) of the transverse field. The contributions of the two terms of (2.17) correspond respectively to the free
fields (Af, Elf) and to the source fields (A., Els). Actually, we need only for the following to know the fields
for R = 0 (because of the electric dipole approximation). From (2.2) and (2.17), one easily derives (see appen-
dix A for the details of the calculation) :

with

similarly

with
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2.2.3 The quantum Abraham-Lorentz equation. - The Heisenberg equations for the electron operators
r and n are

The last term of the right member of equation (2. 23) is smaller than the second one by a factor v/c [see Eq. (2. 3)].
It will be neglected hereafter. On the other hand, we notice that El(0, t) is not multiplied by any electronic
operator so that the problem of order raised in the introduction does not. appear here. Replacing in (2.23)
the total transverse electric field by the sum (2.20) of the free field and the source field and using (2. 22) to eli-
minate n, one gets :

This equation is very similar to the classical Abraham-
Lorentz equation [17]. This is not surprising since
the classical Hamiltonian is similar to (2.13). The
general scheme of figure 1 is valid for both quantum
and classical theories, and the Hamilton-Jacobi equa-
tions have the same structure as the quantum Hei-
senberg ones. Since there is no problem of order,
the physical interpretation of this equation is clear.
Apart from the external potential Vo(r), two fields
act on the electron : its own field and the free field.
The coupling of the electron with its own field is
described by two terms : the first one, proportional
to r, correspond to a mass renormalization from m
to m + 3 bml (2). The second one proportional
to r, is the quantum analogue of the force which
produces the radiative damping of the classical
particle. The last term of (2.24) describes the coupling
of the electron with the free field, i.e. the field which
would exist if the particle was not there. This free
field may include an incident radiation field. Classi-
cally, the description of the electron free motion is
obtained by taking El f(U, t) = 0. In quantum mecha-
nics on the contrary, El f is an operator. Although
its average value can be zero (in the vacuum state
for example), its quadratic average value is always
strictly positive. The modifications of the electron
dynamics originating from this term correspond to
the effect of vacuum fluctuations.
To summarize, it is possible to derive a quantum

form of the Abraham-Lorentz equation. The self
reaction terms appear in a natural and unambiguous
way and are formally identical in quantum and
classical theories. In the ’quantum equation, the
term describing the interaction of the particle with

(2) As in classical theory, the fact that the mass correc-
tion in the Abraham-Lorentz equation and the mass correc-
tion in the rest mass energy (2.9) differ by a factor 3 is due
to the lack of covariance of the cut-off procedure.

the free field operator cannot be considered as a
c-number equal to zero in the vacuum. We discuss
now some consequences of the quantum nature of
this last term.

2. 3 THE DIFFICULTIES OF THE QUANTUM DYNAMICAL
EQUATION. - In its traditional form, the classical
Abraham-Lorentz equation suffers from a well known
defect : the existence of preacceleration and self
accelerated solutions. The discussion of the same
problem in quantum theory is undoubtly interest-
ing [ 18] . We prefer here to focus on some more fun-
damental difficulties inherent in the quantum forma-
lism and which are hidden behind the formal analogy
between the classical and the quantum dynamical
equations.

First, it is worth noting that equation (2.24)
relates non commuting operators. This of course
complicates the resolution of the equation, but is
unavoidable in a quantum theory of the electron
dynamics.
Another difficulty lies in the fact that such an

equation includes both particle and field operators,
respectively r, p and Ef. This problem does not
appear in the classical treatment where the free
field, taken equal to zero, does not contribute to the
Abraham-Lorentz equation. In quantum mechanics,
Ef cannot be cancelled in the same way : physically,
this means that the electron cannot escape the vacuum
fluctuations. To estimate the two contributions of
vacuum fluctuations and self reaction, we then have
to integrate the quantum Abraham-Lorentz equation
with a source term; this introduces further compli-
cations. To avoid this problem, one may try to deal
only with electron operators averaged over the state
of the field. Suppose that the radiation field is in the
vacuum state at the initial time to : Let ( S(t) )R be
the average in this radiation state of the particle
operator S(t).  S(t) &#x3E;R is still an operator, acting
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only in the electron Hilbert space. The average of
equation (2.24) gives :

We have used the fact that the average value of E f
is zero in the vacuum state. It seems in this last equa-
tion that vacuum fluctuations have disappeared and
do not play any role in the evolution of  r &#x3E;R. Actually,
the simplicity of equation (2. 25) is misleading; the
averaged operators r &#x3E;R’  P &#x3E;R do not have the
same properties as the original operators r, p. For

example, their commutation relations are not the
canonical ones ([( r &#x3E;R’  P &#x3E;Rl :A ih) and their evo-
lution is not unitary. So, we are no longer able to
draw a parallel between the classical Abraham-
Lorentz equation and the evolution of  r &#x3E;R given
by (2.25).

Furthermore, all the dynamical aspects of the
electron motion cannot be described only by the
two operators r &#x3E;R and ( p &#x3E;R. The value of the
product  r. p &#x3E;Rl for example, cannot be calculated
as a function of ( r &#x3E;R and p &#x3E;R’ Similarly, equa-
tion (2.25) is not a true differential equation since
( OVo(r) &#x3E;R cannot be expressed in terms of  r )R
and p &#x3E;R. This equation is then not « closed » : : it
links ( r &#x3E;R and its derivatives to another operator
 VV o(r) &#x3E;R for which we have to find the evolution
equation (the vacuum fluctuations will probably
contribute to this equation, which proves that their
disappearance in (2.25) was only superficial).
The previous discussion clearly shows that we

cannot avoid to study now the evolution of electron
observables other than r and p and to ask about
their rate of variation the same type of questions
concerning the respective contributions of vacuum
fluctuations and self reaction. This problem will be
be dealt with in the next section. Note that the sim-

plifications which occurred above for the evolution
of r (no order problem in (2.24) and nullity of the
vacuum average of E f in (2. 25)) will not occur for
the evolution of a general particle observable.
There is a supplementary reason for studying the

evolution of operators other than r and p. Very few
experiments are dealing with the position or the
momentum of an atomic electron. One rather mea-
sures the population of an energy level, the frequency
or the damping of some atomic oscillations asso-

ciated with off-diagonal elements of the density
matrix. This suggests that operators such as I i &#x3E;  i I
or I i &#x3E;  j I (where I i &#x3E; and [ j ) are eigenstates of
the electron in the potential Vo) are more directly
connected to experiment than r and p.

3. Identification of the contributions of vacuum
fluctuations and self reaction to the rate of variation
of an arbitrary atomic observable. - In this section,
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we first evaluate the contributions of the various
terms of the interaction Hamiltonian to the rate of
variation, dG/dt, of an arbitrary atomic observable G
(§ 3. 1). We then discuss the problem of order which
arises when the total field appearing in this rate is

split into its free part and its source part (§ 3.2).
We solve this problem by introducing hermiticity
conditions associated with the requirement of phy-
sical meaning (§§ 3.3 and 3.4). Finally, we discuss
the problem of the vacuum average of the various
rates which requires a perturbative calculation (§ 3 . 5).

3.1 CONTRIBUTION OF THE VARIOUS TERMS OF THE
INTERACTION HAMILTONIAN. - It will be convenient
to divide the total Hamiltonian (2.13) into three

parts, the Hamiltonian

of the electron in the static potential V o(r), the Hamil-
tonian

/ 1B

of the transverse radiation field, and the Hamiltonian

of the electron-field coupling, characterized by the
electric charge e and including the energy of the
longitudinal field of the electron (2.12).
The rate of variation of an atomic observable G

can then be written as

We discuss now the contributions of the three terms
of V to the second commutator (to order 2 in e).

(i) The last term of V is a c-number which com-
mutes with G and which therefore does not produce
any dynamical evolution. This term corresponds to
an overall displacement of electronic energy levels
which we have already interpreted in section 2 as
due to the contribution bm, C2 of the Coulomb field
of the electron to the electron rest mass energy.
This effect must obviously be associated with self
reaction since it originates from the longitudinal field
created by the electron itself. The same situation
exists in classical theory.

(ii) The second term of V does not depend on
atomic variables and thus commutes with G. It has
no dynamical consequences. It nevertheless contri-
butes to the total energy. Let us calculate its average
value. Since we limit the calculation to order 2 in e,
we can replace A(0) by the free field Af(0). The term
then becomes independent of the atomic state and
can be interpreted as an overall shift of the electron
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energy levels. The value of this shift for the vacuum
state of the field is given by

, 

This shift can be interpreted as a new contribution,
6M2 C" to the electron rest mass energy. It is propor-
tional to the vacuum average of the square of the
free field and thus is clearly a vacuum fluctuation
effect, the interpretation of which is well known [19] :
it is the kinetic energy associated with the electron
vibrations produced by the vacuum fluctuations of
the electric field.

(iii) Finally, only the first term of (3 . 3) contributes
to the dynamical evolution of G. The corresponding
term of (3.4) can be written as

where N is an atomic operator given by

If G coincides with p or r, N is equal to 0 or to a
constant and (3.6) reduces to 0 or to A(0). We find
again that the evolution of r and p is very simple.

Finally, combining (3.4) and (3.6) and reintro-
ducing the time explicitly in the operators, we get

.

3.2 THE PROBLEM OF ORDER. - In expression (3.8),
we split, as in section 2, the field A(0, t) in two parts,
Af(0, t) representing the free field and As(0, t) repre-
senting the source field. If the atomic operator N(t)
does not reduce to 0 or to a constant (as it is the
case for r and p), we are immediately faced with the
problem of order mentioned in the introduction.
Since N(t) and A(0, t) commute, we can start in

equation (3.8) with any order

More generally, we can write the last term of (3.8) as

with A arbitrary. Replacing A by Af + As leads to

where the two rates

depend on A since Af and Ag do not commute sepa-
rately with N(t).

A being arbitrary, the splitting (3. 10) of the total
rate is not uniquely defined [11-13J.

3.3 PHYSICAL INTERPRETATION AND HERMITICITY

CONDITIONS. - In order to remove this indetermina-
tion, we introduce now some simple physical consi-
derations.

Suppose that G is a physical observable, repre-
sented by a Hermitian operator. The rate of varia-
tion of G due to the coupling is also a Hermitian

operator [this clearly appears on (3.8) since N(t)
and A(0, t) are commuting Hermitian operators].
Our purpose is to split this rate of variation in two
rates, involving Af and Ag respectively, and having
separately a well defined physical interpretation in
terms of vacuum fluctuations and self reaction.
This interpretation requires that (3 .11 ) and (3. 12)
should have separately a physical meaning, and

consequently should be separately Hermitian. This
condition determines A which must be equal to 1/2.
Thus, the splitting of dG/dt is unique and given by

This could have been obtained by choosing the

completely symmetrical order in (3.9).

3.4 GENERALIZATION TO MORE COMPLICATED SITUA-
TIONS. - It may happen that the total rate of
variation of G does not appear as simple as in (3.6),
i.e. as the product of an atomic observable by a
field observable. For example, if we had not made
the electric dipole approximation, the electron posi-
tion operator r would appear in A. Another example
is the appearance of non Hermitian operators in

(3.6) when the total field A is decomposed into its
positive and negative frequency components which
are not Hermitian. We extend now the previous
treatment to these more complex situations.
We first note that, in the most general case, the

total rate of variation of a physical observable G
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(due to the coupling with the field) can always be
written as

where the Ai are field operators and the Ni atomic
operators which commute, but which are not neces-
sarily Hermitian. For example, in simple models
dealing with two-level atoms and using the « rotating
wave approximation », the coupling Hamiltonian is
taken of the form

where D + and D - are the raising and lowering
components of the dipole moment operator, and
E( +) and E(-) the positive and negative frequency
components of the field [20].
In such a case, we get

with

(3.17) has a structure similar to (3.15).
G being Hermitian, the right side of (3.15) is of

course also Hermitian, but since the atomic and field
operators commute, it could be written as well as

or

or any combination of these forms. When Ai is replac-
ed by Alf + Als, it is easy to see that the hermiticity
condition imposed on dG) and (dG) is no longer

dt f dt sr
sufficient for removing the indetermination. For

example,

are two Hermitian rates of variation which could be
attributed to vacuum fluctuations and which generally
do not coincide since Aif and A+ do not commute
with Ni and Ni+. For the simple model considered
above [see (3.16) and (3.17)] these two rates res-
pectively correspond to the anti normal and normal
orders. So, when the Ai and the Ni are not Hermitian,
we must introduce a new requirement.
Coming back to the expression (3.15) of the total

rate, we first re-express this rate in terms of physically
well defined atomic and field quantities, i.e. in terms
of Hermitian operators. The physical justification
for such a transformation is that we want to be able
to analyse the total physical rate in terms of physical
quantities. For example, it would be difficult to ela-
borate a physical picture from an expression involving
only the positive frequency part of the field which
is not observable. Introducing the real and the ima-
ginary part of the various operators appearing in
(3.15), and using the fact that field and atomic opera-
tors commute, we transform (3.15) into the strictly
equivalent expression

But now the total rate appears as a sum of products of observables of the field by observables of the particle as
in (3.6) and the procedure of the previous section can be applied to each of these products and singles out the
completely symmetric order

when A; is replaced by Air + Ais in (3. 19).

To summarize the previous discussion, a unique
well defined order is singled out by the following two
conditions.

B /.

separately a physical meaning.

(ii) Before replacing Ai by Aic + Ais, the total rate
must be expressed in terms of physical field and parti-
cle quantities.

3.5 VACUUM AVERAGE OF THE VARIOUS RATES. -

To progrecs further, we must now take the average
of the two rates (3.13) and (3.14) over the vacuum
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state of the field. The calculation of such an average
is not trivial (as it was the case in the previous section
for r and p). This is due to the presence of products
of field and atomic operators in the right side of the
equations. For example, when we average the product
eAf(0, t).N(t), we must not forget that these two

operators are correlated since the atomic operator
N(t) depends on the free field which has perturbed
its evolution from the initial time to to t. Consequently,
before taking the vacuum average, we have first to
calculate, to a given order in e, N(t) as a function of
unperturbed (free) atomic and field operators. Since
we limit our calculation to order 2 in e (i.e. to order 1
in the fine structure constant a), we must solve the
Heisenberg equation for N(t) up to order e [e already
appears in (3.13) and Af is of order e°]. When we insert
the perturbative expansion of N(t), which contains
zero or one field operator taken at a time t’ such that
to  t’  t, in the product Af(0, t). N(t), and when
we take the vacuum average, we get « one-time ave-
rages 0 1 Af(t) 0 ) which are equal to zero, and
« two-time averages » such as

(with i, j = x, y, z), i.e. vacuum averages of products
of two components of free field operators taken at
two different times. Similar considerations can be
made about the other products of (3.13) and (3.14).

Actually, such perturbative calculations are not

specific of our choice of the symmetrical order in (3.9)
and they can be found in other papers where other
choices are investigated [11,13]. Rather than duplicat-
ing these calculations, we prefer in the next section
to reconsider our problem of the separation between
vacuum fluctuations and self reaction from a more

general point of view where one asks the same type
of questions for a small system 8 (generalizing the
atom) interacting with a large reservoir 3t (generaliz-
ing the field). The extension of the previous treat-
ment to this more general situation is straightfor-
ward. It leads to mathematical expressions which,
because of their generality, have a more transparent
structure. In particular, since we don’t use, in the
intermediate steps of the calculation, simplifications
specific to a particular choice ofS and :It, we find tliat
some important statistical functions of 8 and A

appear explicitly in the final expressions and this

provides a deeper physical insight in the problem.

4. Extension of the previous treatment to a system
8 interacting with a large reservoir St. - 4.1 INTRO-
DUCTION-OUTLINE OF THE CALCULATION. - It is well
known that spontaneous emission, and all associated
effects such as radiative corrections or radiative

damping, can be considered as a problem which can
be studied in the general framework of the quantum
theory of relaxation in the motional narrowing limit
[21, 22]. Such a theory deals with the damping and
energy shifts of a small system 8 coupled to a large

reservoir 3t. Large means that 3t has many degrees
of freedom so that the correlation time T, of the obser-
vables of 3t is very short, allowing a perturbative
treatment of the effect of the S-3t coupling during a
time Tc. For spontaneous emission, the atom plays
the role of 8, the vacuum field, with its infinite number
of modes, plays the role of 3t, and the correlation
time of vacuum fluctuations is short enough for
having the motional narrowing condition well ful-
filled.

This point of view suggests that we can extend to
any S-3t system the same type of questions we have
asked about the atom-field system. Is it possible to
undestand the evolution of 8 as being due to the effect
of the reservoir fluctuations acting upon 8, or should
we invoke a kind of self reaction, 8 perturbing 3t which
reacts back on 8 ? Is it possible to make a clear and
unambiguous separation between the contributions
of these two effects ?
The extension of the treatment of section 3 to this

more general case is straightforward. We first note
that, although most presentations of the quantum
theory of relaxation use the Schrodinger picture (one
derives a master equation for the reduced density
operator of 8), we have to work here in the Heisen-
berg picture. Actually, the Heisenberg picture is also
used in the derivation of the « Langevin-Mori » equa-
tions describing the evolution of the observables of 8
as being driven by a « Langevin force » (having a zero
reservoir average) and a « friction force » (producing
not only a damping but also a shift of energy levels)
[21, 23, 24]. Our problem here is to identify in the
« friction force » the contribution of reservoir fluctua-
tions and self reaction. Following the general scheme
of figure 1, we start with the Hamiltonian of the 8-fll
system

where

is the interaction Hamiltonian, and Ri and Si are
Hermitian observables of 9t and 8 [we can always
suppose that V has been put in this form, eventually
after a transformation analogous to the one changing
(3.15) into (3.19)]. We then write the Heisenberg
equation for the reservoir observable Ri appearing
in (4.2). The solution of this equation can be written
as the sum of a free unperturbed part Rj (solution
to order 0 in V), and of a « source part » RiS due to
the presence of 8 (solution to order 1 and higher in V)

Expression (4. 3) is finally inserted in the last term of
the Heisenberg equation for an arbitrary system obser-
vable G
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in order to indentify the contribution of reservoir
fluctuations and self reaction. The problem of order
between the commuting observables Ri and

I

in the last term of (4.4) arises in the same way as in
section 3 and is solved by the same physical consi-
derations which impose the completely symmetric
order. We thus get

/t

It remains to perform the average of dG and
dt rf

_dG in the reservoir state (reservoir average).dt sr ( g )
As explained in § 3.5, this requires a perturbative
calculation leading, to order 2 in V, to two time opera-
tor averages which can be expressed in terms of
correlation functions and linear susceptibilities. This
is precisely where the advantage of working with
a general 8-fll system appears. As already explained
in § 3.5, the intermediate steps of the calculation
remain general. For example, when we solve pertur-
batively the Heisenberg equation for R;, we get for
the source part, Ris, a perturbative expansion where,
at the lowest order, the linear susceptibility of the
reservoir appears. In the particular case of the atom
field system, the calculation of the source field has
been done exactly and the result expressed in terms
of atomic operators and time derivatives of these
operators (see equation (2.21)). In such an intermediate
calculation, the fact that the susceptibility of the
electromagnetic field is involved remains hidden, and,
thus this important function does not appear expli-

citly in the final result for dG ).y 
B dt sr /

In order not to increase too much the length of this
paper, we will not give here the detailed calculations

of dG and ( dG following the generaldt rf dt Sr sr / 
g g

scheme outlined above. These calculations will be
presented in a forthcoming paper [25], together with
a discussion of the various approximations used in the
derivation. We just give in this section the results of
these calculations which will be useful for the discus-
sion of section 5. We first give (§ 4. 2) the expression
of the correlation functions and linear susceptibilities
in terms of which we then discuss the structure of the
terms describing the effect of reservoir fluctuations
(§ 4.3) and self reaction (§ 4.4).

4.2 CORRELATION FUNCTIONS AND LINEAR SUSCEP-
TIBILITIES [26]. - When the reservoir average is cal-

culated up to order 2 in V, the reservoir only appears
in the final result through two statistical functions.
The first one

is the symmetric correlation function of the two free
reservoir observables Rlf and Rjf. The average is
taken over the initial state of the reservoir which is

supposed to be stationary, so that Ci)R&#x3E; only depends
on T. Cif&#x3E;(’t) is a real function of i which describes
the dynamics of the fluctuations of Rif and Rjf in the
reservoir state.

The second statistical function,

where 0(i) is the Heaviside function, is the linear sus-
ceptibility of the reservoir. It generally depends on the
reservoir state. XT)(T) is also a real function of t,
which describes the linear response of the averaged
observable ( Rif(t) &#x3E;R when the reservoir is acted

upon by a perturbation proportional to Rjf. Note
that both C and x have a classical limit (if it the case
for 9t) : this is obvious for C, and for x, the commu-
tator divided by ih becomes the Poisson bracket.

Similar functions can of course be introduced for
the small system 8 in an energy level’ a &#x3E;, with energy
Ea. We will note them

where the upper indices (S, a) mean that 8 is in a &#x3E;,
and where the lower index f on Sif and Sjf means that
these operators are unperturbed system operators
evolving only under the effect of HS (as for Rif and Rj,
which evolve only under the effect of HR).

Finally, we will note llltl(m), itj1(oi), tj
xya(c) the Fourier transforms of (4.7), (4.8), (4.9),
(4. 0), the Fourier transform f(w) of f (t) being
defined by

4.3 STRUCTURE OF THE RESULTS DESCRIBING THE
EFFECT OF RESERVOIR FLUCTUATIONS. 2013 The first

important result concerning the reservoir averaged
rate of variation (( dg}f ) R is that only Cl:B 1:)R
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appears in its expression, and not xiR(t). Furthermore,
the corresponding relaxation equations have exactly
the same structure as the ones which would be obtain-
ed if the reservoir observables Ri were replaced in the
interaction Hamiltonian (4.2) by fluctuating c-num-
bers ri(t) having the same correlation functions

CljR)( L); j

We conclude that, with our choice of the symmetric
order in (4. 6), the effect of reservoir fluctuations is the
same as the one of a classical random field having the
same symmetric correlation function as the quantum
one.

We show also in reference [25] that the average rate

of variation 
dG 
I and also Bof variation ( dgrf ) , and also ( -r- ) ,t ,f R dt Sr R’

can be decomposed into a Hamiltonian part and a
non Hamiltonian part. The Hamiltonian part des-
cribes (in the so-called secular approximation) a shift
of the energy levels of 8 due to the 8-fll coupling. The
non Hamiltonian part describes, among other things,
the exchange of energy between 8 and r.
The shift, (ðEa)rf’ of the level I a &#x3E; of 8 due to reser-

voir fluctuations is found to be

Such a result has a very simple structure and a very
clear physical meaning (Fig. 2a). One can consider
that the fluctuations of 3t, characterized by Ci)R)( ’t),
polarize 8 which responds to this perturbation in a
way characterized by x;°a(i). The interaction of the
fluctuations of 3t with the polarization to which they
give rise in 8 has a non zero value because of the corre-
lations which exist between the fluctuations of %
and the induced polarization in S. The factor 1/2
in (4.13) is even somewhat similar to the factor 1/2
appearing in the polarization energy of a dielectric.
Finally, it is shown in [25] (by parity arguments) that
only the reactive part of XIJa)( ’t) contributes to the

Fig. 2. - Physical pictures for the effect of reservoir fluc-
tuations and self reaction. a) Reservoir fluctuations : the
reservoir fluctuates and interacts with the polarization
induced in the small system. b) Self reaction : the small
system fluctuates and polarizes the reservoir which reacts
back on the small system.

integral (4.13). To summarize this discussion, we can
say that the energy shift (bEa)rf can be interpreted
as resulting from the polarization of 8 by the fluctua-
tions of iq.
We now turn to the discussion of the non Hamil-

tonian part of dG . A very suggestive resultp 
B dt ,f R 

y gg

concerns the absorption of energy by 8 when 8 is in

a &#x3E;. The effect is described b y dHs dt rf R,a (G isB B DT /rf / R,a
replaced by m and the average is taken over both the
state of the reservoir and the state I a &#x3E; of 8). One finds

/ I I I

This result is identical with the one which would be
obtained if a classical random perturbation with a
spectral power density êif)(ro) was acting upon 8
(see reference [27], § 124; see also [28]). The term inside
the brackets is actually the dissipative part of the
susceptibility of 8 at frequency w. This dissipative
part is multiplied by the spectral power density of the
perturbation produced by fll. Here again we get a
result in agreement with the picture of 8 responding
to the fluctuations of fll.

4.4 STRUCTURE OF THE TERMS DESCRIBING THE

EFFECT OF SELF REACTION.-As expected, the reservoir

appears in ( dG only through the linear suscep-pp 
dt sr R 

y g p

bility x)tl(r). Thus, it appears that:R is now polarized
by S. We can interpret the rate of variation dGdt sr R
as being due to the reaction back on 8 of the polariza-
tion of iq by 8 (Fig. 2b).
As in the previous section (4. 3), it will be interesting

now to discuss the shift (bEa),. ,, of a ) due to self
reaction. This shift is found to be

The same comments can be made as for (4.13), the
roles of 8 and fll being interchanged. Here also, only
the reactive part of xiR(T) contributes to (4 .15).

Finally, we can study the equation corresponding
to (4.14) for self reaction
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Here also the same comments can be made, the roles
of 8 and % being interchanged. Note however the
difference of sign between (4.14) and (4.16). This is
due to the fact that (4.14) describes a transfer of
energy from 1t to 8 (gain for 8), whereas (4.16) des-
cribes a transfer from 8 to 1t (loss for 8). Actually
(4.14) can also describe a loss for 8, and (4.16) a gain,
if there are adequate population inversions in 8 for
(4.14), in 1t for (4.16), responsible for an amplifying
behaviour of the susceptibility (instead of a dissi-
pative one).

It must be emphasized that all the results derived
in this section follow from the choice of the symmetric
order in the total rate dG/dt before replacing Ri by
Rif + Ris. They can be all interpreted in terms of two
simple physical pictures : 1t fluctuates and polarizes 8,
8 fluctuates and polarizes 1t. The clear physical struc-
ture of the results which have been obtained in this
way, and the coherence of the physical interpretation
can be considered as a confirmation a posteriori of
the pertinence of the method of separation we propose
in this paper. The priviliged character of the sym-
metric order for physical interpretation is thus
confirmed.

Remark. - The previous treatment allows an easy
and clear discussion of the consequences of the fluc-
tuation dissipation theorem [26]. Note first that this
theorem holds only for systems in thermal equilibrium
(populations of the various levels varying according
to the Boltzmann factor corresponding to a given
temperature). The above treatment is more general,
and is valid for an arbitrary stationary state of the
reservoir (the energy levels may have any population).
For a reservoir at thermal equilibrium which is the
case of the electromagnetic field vacuum, the fluctua-
tion dissipation theorem states that the correlation
function tj is proportional to the dissipative
part of the corresponding reservoir susceptibility.
Thus, in this case, one could formally replace in (4.13)
and (4.14) the correlation function of the reservoir
by the dissipative part of the reservoir susceptibility

and make the reservoir fluctuations to apparently
disappear from formulae (4.13) and (4.14). But it is
also clear that, after such a formal transformation,
these two expressions have lost their physical meaning
since they appear as the product of two susceptibilities.

5. Physical discussion. Contributions of vacuum
fluctuations and self reaction to the radiative correc-
tions and radiative damping of an atomic electron. -
We now come back to our initial problem concerning
the respective contributions of vacuum fluctuations
and self reaction for an atomic electron.
We have given in the previous section very simple

and general expressions for important physical effects
such as the shifts of the energy levels of 8, or the energy
exchanges between 8 and ’il, these expressions involv-
ing only correlation functions or linear susceptibilities
of 8 and :R.
What we have to do now is to calculate first these

correlation functions and linear susceptibilities in
the case where 8 is an atom and iq the vacuum elec-

tromagnetic field (§ 5 .1 ). We will then be able, using
(4 .13), (4. 14), (4.15), (4. 16), to discuss the respective
contributions of vacuum fluctuations and self reaction
to the radiative corrections for an atomic electron
(§ 5. 2) and the rate of exchange of energy between
the atom and the field (§ 5. 3).

5.1 CORRELATION FUNCTIONS AND LINEAR SUSCEP-
TIBILITIES FOR THE VACUUM FIELD AND FOR AN ATOMIC

ELECTRON. - Comparing (4.2) and the first term of
(3.3) (which is the only one to produce a dynamical
evolution of atomic observables, see § 3.1), we get,
for the atom field problem

with i = x, y, z.

According to (4.7) and (4.8), the relevant statistical
functions for the field are :

where 10 &#x3E; is the vacuum state of the field and the index f means a free evolution for the operators. The calcula-
tion of these two functions is straightforward and given in the Appendix B. One gets :
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The Fourier transforms of (5. 4) and (5. 5) are also useful :

Because of the cut-off (2.10) expressions (5 . 6) and (5.7) hold only for I w I  WM’ C and x being equal to zero
elsewhere. It follows that the 6 and 6’ functions in (5 . 5) have actually a width l/WM.

Remarks : (i) The linear susceptibility of the field relates the linear response of the field, at point 0 and at
time t, to the perturbation associated with the motion of the electron at earlier times. This response is nothing
but the source field produced by the electron (and calculated to lowest order in e). Going back to the precise
definition of x [26], and using (5. 5), we get for the « linear response»  0 1 A i(t) I 0 &#x3E; :

which coincides, to order 1 in e, with the expression given in (2 .19b) for the source field. This clearly shows that,
in the derivation of (2 .19b), we have implicitly calculated the susceptibility of the field. Rather than using this
intermediate result, we have preferred in sections 4 and 5 to keep general expressions such as (4.13), (4.14),
(4 .15), (4 .16), which have a clear physical meaning, and to specify the values of C and x for the field only in these
final expressions.

(ii) The free field commutator of (5.3) is a c-number ([a, a’] ] = 1), proportional to h [see expression (2.3)
of Ak]. It follows that the linear susceptibility X(R) of the field is independent of the state of the field, and indepen-
dent of h. Therefore the classical and quantum linear susceptibilities coincide. Since the source field is directly
related to X(R) (see previous remark), it has the same expression in both classical and quantum theories, and this
explains why self reaction forces are formally identical in classical and quantum Abraham-Lorentz equations.

We consider now the atomic statistical functions. Their calculation is also straightforward. Using (5.1) in
(4-9) and (4.10), replacing pif(t) by eiHst/1f pi e-iHst/1f and introducing some closure relations, we get :

where 1iWab = Ea - Eb.
The Fourier transforms of (5-9) and (5 .10) are :

where (T means principal part.
The first line of (5 .12), which contains only principal parts, is the reactive part x’ of the susceptibility, whe-

reas the second line, which contains only 6-functions, is the dissipative part ix" [26-27].

5.2 RADIATIVE CORRECTIONS FOR AN ATOMIC ELECTRON. - 5.2.1 Calculations of (6Ea)vf and (bEa)Sr. -
We can now use the results of the previous section (5.1) for evaluating the two integrals appearing in the expres-
sions (4.13) and (4.15) giving the energy shifts of the atomic level a respectively due to vacuum fluctuations
and self reaction. We must not forget to add 6M2 C 2 to (6E,,)vf and 6m, C2 to (6Ea).,,, where bm2 c2 and 6m, c2
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are given by (3. 5) and (2.12) and represent overall energy shifts respectively due to vacuum fluctuations and
self reaction (see § 3 .1 ).

Using (4.15), (5.5) and (5.9), we first calculate :

which gives :

For (bE,,),f, we first use the Parseval-Plancherel identity

The integral over m is then performed. Using (5.6) and (5.12), we get for (5.15) :

(Terms in l/wM have been neglected in (5.16).)
As in similar calculations [29], we introduce an average atomic frequency w defined by :

The summation over b in (5.17) can then be easily done :

Finally, one gets for (ðEa)vf :

It is important to note that, in the derivation of
(5.14) and (5.19), we have not used approximations
such as the two-level approximation, or the rotating
wave approximation. The energy level shifts are due
to virtual transitions involving non resonant couplings.
Consequently, a correct derivation of these shifts
must take into account all atomic states and both

positive and negative frequency components of the
field.

5.2.2 Main effect of self reaction : modification of
kinetic energy due to a mass renormalization. - The

first term of (5.14) has already been interpreted as
the increase of the rest mass energy of the electron
due to its Coulomb field. The last term can be consi-
dered as the first order correction to the average
kinetic energy of the electron when m is replaced by
m + 4 ðm1/3 :
/ 1 p2 1 B / I v2 I B
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The electron is surrounded by its Coulomb field,
and when one pushes the electron, one has also to
push its Coulomb field (electromagnetic mass).
The mass corrections appearing in the two terms

of (5.14) are not the same. This discrepancy is due
to the non covariant cut-off (see discussion of § 2 .1. 4),
and also exists in classical theory.

Finally, it must be noted that, since the 2sij2
and 2Pl/2 states of hydrogen have the same average
kinetic energy, a mass correction produces equal shifts
for the two levels and cannot remove their degeneracy.
Self reaction alone cannot therefore explain the Lamb-
shift.

5.2.3 Main effect of vacuum fluctuations : modi-
fication of potential energy. - The first term of (5.19)
coincides with the standard non relativistic expression
for the Lamb-shift [29]. It appears as a correction
to the potential Vo(r) which becomes V o(r) + ðV o(r)
where

If V o(r) is the Coulomb potential of a nucleus
located at the origin, LB V o(r) is proportional to 6(r),
and therefore only s states are shifted by such a
correction, which explains in particular how the

degeneracy between 2S 1 /2 and 2p 1 /2 can be removed.
Welton has pointed out [3] that a correction of

the same type as (5 . 21 ) would be obtained, if the
electron was submitted to a fluctuating classical field,
with frequencies large compared to the atomic fre-
quencies. The electron, vibrating in such a fluctuating
field, averages the external static potential over a
finite volume. If the spectral density of this random
perturbation is identified with the one of vacuum
fluctuations, one gets for the coefficient of LB V o(r)
the same value as in (5 . 21 ), W being simply replaced
by a low frequency cut-off. Welton’s analysis esta-
blishes a connection between Lamb-shifts of atomic
levels and vacuum fluctuations and provides a clear
and simple physical picture.
Our choice of the symmetric order in (3.9) ascribes

corrections such as (5.21) to vacuum fluctuations
and entirely legitimates Welton’s interpretation for
the Lamb-shift.
We have already seen (§ 3 .1. ii) that vacuum fluc-

tuations are also responsible for a correction bm2 to
the electron mass (last term of (5.19)).

Remarks : (i) It may appear surprising that our
calculation doesn’t give any correction to the kinetic
energy associated with the mass correction 6M2 due
to vacuum fluctuations. One would expect to find,
as in the previous section, a term of the order of

Actually, coming back to the expressions (2. 12)
and (3.5) of bm, and Dm2, and introducing the fine
structure constant a = e2/4 neo hc, one can write

Therefore, it clearly appears that 6M2/M is of higher
order in 1/c than bml/m. This explains why the
correction to the kinetic energy associated with 6M2
is not given by our calculation which is limited to
the lowest order in 1 /c. The basic Hamiltonian (2.13)
does not contain any relativistic correction. A more
precise calculation including in the Hamiltonian
relativistic corrections up to order 1 /c2 [4] (and
using an effective Hamiltonian method for evaluating
radiative corrections) actually gives the expected
correction (5.22).

(ii) The present calculation (as well as the one of
reference [4]) does not include of course any multi-
particle effect (virtual pair creation). It is well
known [19] that many particle effects reduce the

divergence of the electron self-energy (6mi + 6M2) c2,
with respect to the cut-off (om. Instead of having a
linear and quadratic divergence (see (5.23)), one

gets a logarithmic one. Also, new correction terms,
associated with vacuum polarization effects, appear.

5.2.4 Classical versus quantum effects. - A strik-
ing difference can be pointed out between the contri-
butions of self reaction and vacuum fluctuations to
radiative corrections does not appear in (6Ea).,,
[see (5.14) and the expression (2.12) of bm1], whereas
h does appear in both terms of (6Ea),f [see (5.19)
and the expression (3.5) of 6M2]’
The fact that self reaction corrections are purely

classical (independent of 1i) is not surprising. We
have already explained (see remark (ii) of section 5 .1 )
why self reaction terms are identical in both classical
and quantum theories.
On the other hand, vacuum fluctuation correc-

tions have an essentially quantum nature since they
are due to the non zero mean square value of the
fields in the vacuum, which is a pure quantum effect.
It must be noted however that, once the correlation
function of vacuum fluctuations is computed from
the quantum theory of radiation, their effect on the
atom (to the lowest order in a) may be evaluated
semi-classically, since we have shown in § 4.3 that
reservoir fluctuations have the same effect (to the
lowest order) as a classical random field having the
same correlation function. This explains why pure
quantum effects, such as those produced by the
vacuum fluctuations of the quantized radiation field,
can be calculated as if a classical random field, with
a power spectral density equal to hm/2 per mode,
was acting upon the atom [30].
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To summarize, our choice of the symmetric order
in (3.9) leads to self reaction corrections which are
strictly equivalent to the corresponding classical ones,
whereas vacuum fluctuations appear to be respon-
sible for pure quantum effects which can be however
computed semi-classically, once the correlation func-
tion of vacuum fluctuations is given.

5.2.5 Spin and magnetic effects. Interpretation of
the spin anomaly g - 2. - In this section, we take
into account the spin S of the electron and the cor-
responding magnetic moment

Even in the absence of any external static magnetic
field Bo, M. interacts with the magnetic field B of
the transverse radiation field. We should add to the
interaction Hamiltonian V given in (3.3) a term.

describing such a coupling. This would introduce in
the final expressions of radiative corrections new
correlation functions and new linear susceptibilities
involving two components of B, or one component
of B and one component of A. Since an extra 1 /c
factor appears in the expansion of B in plane waves
[see expression (2.3)], we conclude that the new
radiative corrections associated with (5.25) would
be at least one order in 1 /c higher than those calcu-
lated previously, and which, according to (5.13)
and (5.19) are in e2/c3 (or a/mc2). If we restrict our
calculations to the lowest order in 1 /c, as we do in
the non relativistic approach used in this paper, we
can therefore ignore the magnetic couplings of the
spin with the radiation field and neglect (5.25) (1).
The same argument does not apjly of course to

the interaction of S with an externa static magnetic
field Bo deriving from the static vector potential Ao :

We must add to the atomic Hamiltonian Hs a new
term describing the interaction of M. with the static
magnetic field Bo at the electron position

We must also replace the electron momentum p by :

To summarize, if, at the lowest order in 1 jc, i.e. at

(3) If we would like to go to higher orders in 1 /c, we should
include relativistic corrections in the Hamiltonian and
retardation effects.

order e2/c3, we want to include spin and magnetic
effects, we must use :

instead of (3 .1 ), and replace p by no in the first term
of (3 . 3) :

What are the corresponding changes in (bE,,),,
and (ðEa)vf ? Since the field operators remain unchang-
ed in (5. 30), we still use (5. 4) and (5. 5) for C(R) and X(R).
On the other hand, we must change p into no in the
expressions (5.9) and (5.10) of C(s) and X(S).

Consider first the modifications occurring for

(bEa)Sr The only change in (5.14) is that we have

n’/2 m instead of p2/2 m. Since n’/2 m has the phy-
sical meaning of a kinetic energy in presence of the
static vector potential Ao, we conclude that the main
effect of self reaction is, as before, to change the mass
appearing in the kinetic energy

It must be emphasized that, at this order in 1 /c, the
mass renormalization due to self reaction does not
affect the last term of (5.29). The mass m which
appears in the spin magnetic moment eS/m remains
unchanged. We don’t get any term of the form

We will come back later on this important point,
when discussing the origin of the spin anomaly g - 2.
We now discuss the modifications for (bE,,,),f. The

calculations are very similar to those of § 5.2. l, the
only difference being that, in the double commutator
of (5.18), we must use the new expression (5.29) of
H,, and replace p by no. We have therefore to calculate :

If we suppose that Bo(r) is homogeneous (indepen-
dent of r) and if we keep only terms linear in Bo,
expression (5.33) reduces to (5.18). Thus, for homo-
geneous weak static magnetic fields, vacuum fluc-
tuations do not introduce any new radiative correc-
tion related to spin and magnetic effects.
We have now at our disposal all what is needed

for discussing the contribution of self reaction and
vacuum fluctuations to the electron dynamics in

presence of a weak homogeneous static magnetic
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field. Combining the previous results, the corrected
atomic Hamiltonian (including radiative corrections)
can be written :

where corrections including bm, are due to self reac-
tion and 6Vo(r) to vacuum fluctuations.
The spin magnetic moment appearing in the last

term of (5.34) can be written as :

In terms of the « bare » (uncorrected) mass, the g
factor of the electron spin is 2. But, the mass which
is measured experimentally, in deflection experiments,
is the renormalized mass, i.e. the mass which appears
in the corrected kinetic energy

so that, if we reexpress MS in terms of m, we have
from (5.35)

with

So, it clearly appears that the positive sign of g - 2
is due to the fact that self reaction corrects only to
lowest order the kinetic energy and not the magnetic
coupling between S and Bo. The motion of the charge
is slowed down but not the precession of the spin.
This is easy to understand. In the non relativistic
limit we are considering in this paper, electric effects
predominate over magnetic ones and self reaction is
stronger for a charge than for a magnetic moment.
We therefore arrive at the same conclusions as other
treatments [4, 31].

If the calculation was pushed to higher orders
in 1 /c, as in [4], we would get corrections to the spin
magnetic moment, especially those due to the vacuum

fluctuations of the magnetic field B(0) of the radia-
tion field which exert a fluctuating torque on Mg,
producing an angular vibration of the spin and,
consequently, a decrease of the effective magnetic
moment. This is the equivalent of Welton’s picture
for g - 2 which would produce a negative spin ano-
maly if this was the only mechanism. We understand
now the failure of such a picture. For g - 2, the

predominant physical mechanism is self reaction
which slows down the motion of the electric charge.

5.3 RATE OF EXCHANGE OF ENERGY BETWEEN THE
ELECTRON AND THE RADIATION FIELD. -5.3.1 Contri-
bution of self reaction. - We start from (4 .1 b) and
we use the expressions (5. 7) of xR and (5.11) of CS.
Because of the 6 function appearing in (5. 11), the
integral over w is readily done, and we get for the
rate of energy loss due to self reaction by the electron
in state a

Now, we write (4)

Finally, by using (5.40) and the closure relation
over b, we transform (5.39) into :

Such a result is extremely simple and exactly coin-
cides with what is found in classical radiation theory.
The rate of radiation of electromagnetic energy is

proportional to the square of the acceleration of the
radiating charge, the proportionality coefficient being
just the one appearing in (5.41). We note also that,
if self reaction was alone, the atomic ground state
would not be stable, since the square of the accele-
ration has a non zero average value in such a state.

5 . 3 . 2 Contribution of vacuum fluctuations. - We now use (4.14) and the expressions (5.6) of C(R) and
(5.12) of X(s). This gives

I . I . I - -+I’YB

(4) The atomic operators appearing in X(S) are free atomic operators. This is why their time derivative is given by the
commutator with Hg (and not with the total Hamiltonian H).
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Using (5.40), and distinguishing the terms Wab &#x3E; 0 (Ea &#x3E; E6) and the terms Co-b  0 (Ea  E6), we get :

The first line describes an absorption of energy by the electron which jumps from a to a higher state b,
whereas the second line describes an emission of energy by jumps to lower states. This is in agreement with
the picture of a random field inducing in the atomic system both downwards and upwards transitions.

Now, coming back to (5.41), we can reintroduce the closure relation over b between rand r, which gives :

Adding (5.43) and (5.44), we get for the total rate of energy loss by the electron in state a

This satisfactory result means that the electron in
the vacuum can only loose energy by cascading down-
wards to lower energy levels. In particular, the ground
state is stable since it is the lowest state.
The previous discussion clearly shows that the

ground state cannot be stable in absence of vacuum
fluctuations which exactly balance the energy loss
due to self reaction [28]. In other words, if self reaction
was alone, the ground state would collapse and the
atomic commutation relation [x, p] = ih would not
hold. Such a collapse is prevented by vacuum fluc-
tuations which actually originate from the quantum
nature of the field, i.e. from the commutation rela-
tion [a, a+] = 1. We have here an illustration of a

very general principle of quantum mechanics. When
two isolated systems interact (here the atom and the
field), treating one of them quantum mechanically
and the other one semi-classically leads to inconsis-
tencies [32]. The field commutation relations are

necessary for preserving the atomic ones and vice
versa.

6. Conclusion. - We have removed the apparent
indetermination in the separation of vacuum fluc-
tuations and self reaction by imposing to the cor-
responding rates of variation to have a well defined
physical meaning (hermiticity requirements).

Such a procedure is very general and can be extended
to the case of a small system 8 interacting with a
large reservoir fll. The results of the calculation can
be expressed (5) in terms of simple statistical func-
tions of the two interacting systems, leading to simple
physical pictures : % fluctuates and polarizes 8

(reservoir fluctuations effects) ; 8 fluctuates and pola-
rizes fll (self reaction effects).
When applied to the case of an atomic electron

interacting with tlie vacuum field, such a procedure
gives results in complete agreement with the usual
pictures associated with vacuum fluctuations and
self reaction. All self reaction effects, which are inde-
pendent of fii, are strictly identical to those derived
from classical radiation theory. All vacuum fluctua-
tion effects, which are proportional to h, can be
interpreted by considering the vibration of the elec-
tron induced by a random field having a spectral
power density equal to hm/2 per mode.

(5) It must be kept in mind that all the calculations have
been limited to order 2 in the coupling constant At higher
orders, cross terms would appear between reservoir fluc-
tuations and self reaction.
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Appendix A : Calculation of the source fields AS(o, t) and Els(o, t). - Equations (2 . 2a) and (2.2b) give
the expressions of A and El in terms of the creation and annihilation operators :

Inserting (2.17) into these two equations, one gets the expression of AS(0, t) and E1S(O, t) :

We now permute the summation over k, E and the integration on t’, the angular summation is easily performed
and we get :

where the function bM(i) is given by

This function 6M(T) is symmetric, centred on i = 0, has a width equal to l/wM and satisfies the equation

Equations (A. 3a) and (A. 3b) can be written, by putting t = t - t’ and taking to equal to - oo :

Using an integration by parts, one gets

The characteristic times for the evolution of n(t) are very long compared to the width I /COM of bM(i) [see
Eq. (2. 11)]. We can therefore replace in (A. 7a) and (A. 7b) n(t - t) and n(t - t) by it(t) and n(t). The remaining
integral of ðM(t) from r = 0 to T = oo is equal to 1 /2, as a consequence of the symmetry of 6M(T). One finally
gets
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(A. 8a) and (A. 8b) are nothing but (2 .19b) and (2. 21b) using the expression of 6mi given in equation (2.12).

Appendix B : Correlation function and linear susceptibility of the field - The correlation function of the
field is given [ct: Eq. (5.2)] : ;.

where the operator A f(0, t) is the free vector potential. Using its expansion in plane waves, one gets

Replacing the sum by an integral and using the expression (2. 3) of Ak, one gets

This can also be written :

The linear susceptibility is calculated in the same way. Starting from

one gets

In this paper, the susceptibility of the field always appears in expressions such as

where fåS)( ’t") is a function concerning the small system S. The characteristic times of evolution of hjS) are then
much larger than I/( om so that one can proceed in the same way as for (A. 6a). Using an integration by parts,
one finds that

where 6 here acts on the slowly varying functions fiJ’)(T) as a true delta function.
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